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 A B S T R A C T

Shape control involves manipulating a deformable object towards a desired shape. In this paper we present a 
multi-scale elastic contour mapping method for shape control of texture-less deformable objects. Our method 
considers similar geometric features between the current and the target shape by means of multi-scale Laplacian 
descriptors. We compute elastic maps and thus define a contour point error that considers the stretching and 
compressing processes involved in shape control tasks. We validate the applicability of our novel mapping 
method in real shape control frameworks by means of a proposed shape control law. We perform simulations 
and experiments on different objects and materials with two robotic arms to validate our method.
1. Introduction

Visual-based object manipulation encompasses a variety of areas 
such as the manipulation of deformable objects. Within this area, shape 
control is a major challenge for a number of reasons, amongst them: 
there is a wide variety of deformable objects that can be classified 
according to different characteristics, such as shape, material or tex-
ture [1]. Another issue concerns the fact that, in a realistic scenario 
with a limited number of actuators, a deformable object is an under-
actuated system, as it holds an infinite number of degrees of freedom. 
Defining the shape control problem to be solved is considerably chal-
lenging, given the large range of diverse tasks that can be performed on 
deformable objects. This variety of different objects and tasks suggests 
the need to formalise the problem, something that has been addressed 
in surveys such as [2–5].

A deformable object classification within the robot manipulation 
context is proposed in [2]. Using a combination of physical-based 
and shape-based criteria, objects are classified as cloth-like, linear, 
planar, or solid. The tasks that can be performed on each type of 
object are also categorised, including tying knots (for linear objects), 
folding (for cloth-like and planar objects), hanging, splitting, cutting, 
etc. Our proposed method focuses on the shape control problem, which 
is relevant to the large-strain object group, i.e. objects that present a 
low Young’s modulus (according to [2]). Shape control methods differ 
depending on the object type. However, they can be generally grouped 
according to a number of characteristics such as the model used by the 
control strategy (e.g., physical models, interaction matrix estimation or 
learning-based), the considered type of deformation (isometric, strain 
deformation, etc.) or the geometric features that change during the 
deformation (small/local or large/global deformations).
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1.1. Related work

Based on a discrete network of mass–spring-damper systems and 
using curve parametrisation, the method in [6] controls several ma-
nipulators on planar objects in order to achieve local deformations 
(in simulation) by means of a dynamic energy-based control law. 
Addressing the problem of manipulating deformable objects locally, 
the approach in [7] approximates the Jacobian of the deformable 
object while also considering the stretching limits of the object and 
gripper collision with obstacles. Using Shape-from-Template (SfT) with 
monocular perception, [8] performs real experiments involving large 
isometric deformations on planar objects.

The visual-feature based estimation of the Jacobian matrix in [9] 
allows to control multiple visual feedback points of compliant elas-
tic objects. In [10] an adaptive deformation model is proposed and 
validated with experiments carried out with various materials such 
as meat, foam and plastic. In [11], truncated Fourier series represent 
the 2D object shape and the deformation parameters are estimated to 
approximate the deformation Jacobian matrix. The method is validated 
through experiments carried out with two grippers (one active and 
one passive). Zhu et al. estimate the interaction matrix by applying 
Principal Component Analysis (PCA) to the 2D contour points of the 
shape’s image projection [12]. Simulations and experiments involving 
one gripper and interaction with a passive element of the scene validate 
the method. Making use of a Fourier series parametrisation, a dual-
arm flexible cable manipulation method is presented and validated with 
experiments in [13].

In the approach presented in [14], image contour moments are used 
to define a sliding control strategy that allows to perform shape control 
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Fig. 1. Method’s general overview. Current contour points are retrieved from the object’s surface RGB-D information. Our proposed FMM Laplacian-based elastic mapping, which 
constitutes the main contribution of this paper, is performed between current and target contour points. The mapping allows to define the shape error for the control strategy, 
which generates actions for each of the robots’ end effectors.
Fig. 2. Illustrative example of a homogeneous map (a) and an elastic map obtained using our proposed multi-scale elastic mapping method (b). A square (current shape) is mapped 
to a rectangle (target shape). The lines between points represent mapped points (for clarity and ease of comparison, the lines have been coloured). In contrast to the homogeneous 
mapping, the elastic mapping favours the preservation of similar geometrical features (such as corners, in this example). The differences are also evident in the point-to-point 
distance distributions (c) each map generates.  (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
with objects that range from soft to rigid (articulated). Stability proof 
and experiments with a dual-arm robot setup validate their approach. 
The As-Rigid-As-Possible (ARAP [15]) geometric model allows the 
authors to compute a deformation Jacobian for shape servoing in [16]. 
They achieve experimental results with planar objects such as plastic 
mats, shoe soles and tire treads.

1.2. Proposed method overview

We propose an FMM (Fast Marching Method) Laplacian-based elas-
tic contour mapping method to be used in robotic applications that 
involve the manipulation of deformable objects (e.g., see Fig.  1 where 
an overview of a deformable object shape control framework is illus-
trated). Our method tackles the definition of a holistic shape error that 
does not rely on visual texture and thus can be suitable for real appli-
cations and tasks such as food manipulation, where positioning fiducial 
markers is not a suitable option. The formulation of the problem is 
further elaborated in Section 2.

One of the major problems within shape control is to define a 
target (control reference) for the control system. The concept of shape
is vague and lacks mathematical formalisation. This has led authors to 
develop different methods of measuring error in their shape control 
approaches. Some methods define the error through descriptors that 
partially encapsulate the geometry of the object, as it is the case of [10]. 
Other approaches compare shapes by using less compressed geometric 
information as it is the case of contour maps [12,17]. When a shape 
control reference is established through a contour map, the definition 
2 
of the mapping process implicitly carries an estimation of how the 
object is expected to be deformed throughout the control process. This 
can be crucial in those cases where a map is not representative of 
realistic deformations: see Fig.  2, where the homogeneous map infers 
severe deformations such as the need to completely flatten the upper 
right corner of the square (for example), while the elastic one aims to 
stretch the object vertically, thus implying a more realistic deforma-
tion. Homogeneous maps between contours is a common approach in 
the literature [12,17]. However, homogeneous maps can only capture 
shape resemblance when no elastic deformation processes are involved 
in the shape control task. In this paper we develop on the computation 
of elastic maps between the current and the target shape contours 
that seeks shape resemblance on multi-scale level. The proposed elastic 
mapping method constitutes both a formalisation and an extension of 
our previous work in [18].

The novel contributions presented in this paper and main improve-
ments with respect to [18] are:

• We improved the mapping method so that we no longer need to 
assume that the contour mapping is homogeneous in the locality 
of a contour point. This increased the method’s performance when 
analysing features at larger scales resulting in a smoother multi-scale 
contour mapping.

• Our method now disregards the cost of non-injective maps. That is, 
we provide a more accurate estimation of mapping costs as we do not 
consider the cost of unfeasible maps in the locality of points.

• In the literature, since closed contours have no ends, methods such 
as [12] need to previously define the first matching points between 
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Fig. 3. Problem setup representation. Current object’s visible surface 𝛩 and its 
boundary 𝜕𝛩 are represented along with the target shape’s boundary 𝜕�̄�. Current 𝑣𝑏𝑚
and target �̄�𝑏𝑞 contour points are extracted from both shapes. The object is grasped 
by 𝐺 grippers at 𝛾𝑔 points. Rigid transforms 𝐓𝑚𝑤 and �̄�𝑞𝑤 define each of the contour 
points’ 𝑣𝑏𝑚 and �̄�𝑏𝑞 local references.

the current and the target contour. In this paper, we propose an 
improved closed contour mapping strategy that, within a single opti-
misation process, automatically defines proper first matching points 
as well as the rest of the elastic contour map between the contours.

• We validate the applicability of the novel elastic mapping method in 
real shape control setups whereas only simulations were presented 
in [18].

2. Problem formulation

Our proposed method focuses on elastic planar objects, which can 
be geometrically represented by surfaces with 2D intrinsic coordinates 
embedded in 3D Euclidean space (extrinsic coordinates). We define 
the object’s shape as its visible 1D closed contour (Jordan curve) 
embedded in 3D Euclidean space. As we are perceiving the object 
with visual sensors, we assume the object’s surface remains visible 
during the deformation process (something that can be achieved with 
optimal perception methods [19]). The number of grippers, placed 
along the object’s contour, is defined by G ≥ 2 and we assume the 
grasping of the deformable object to be solved (something that can be 
achieved through methods like [20]). In this paper we do not tackle the 
automatic gripper positioning problem as we define gripper locations 
manually. Note that, in order to cause any deformation to a deformable 
object at steady-state, at least two grippers are required when inertia 
and gravity are negligible (this is generally assumed in the shape 
control literature, for instance [10,21]). In addition, the modification 
of the gripper-to-object contact points during the shape control process 
is not considered.

A representation of the problem setup is shown in Fig.  3. The 
planar object 2D surface 𝛩 (embedded in 3D Euclidean space) can be 
segmented from the RGB-D sensor data as a set of 3D points 𝑣𝑛 ∈ 𝑉 =
{𝑣𝑛, 𝑛 = 1,… , 𝑁} with position vectors 𝐯𝑛 ∈ R3. The boundary of 𝛩, 
denoted by 𝜕𝛩, is retrieved from 𝑉  by means of an 𝛼-shape [22] contour 
extraction that generates ordered contour points 𝑣𝑏𝑚 ∈ 𝑉 𝑏 = {𝑣𝑏𝑚, 𝑚 =
1,… ,𝑀} ∋ 𝑉 𝑏 ⊆ 𝑉 . For now on, letter 𝑏 (both as sub-index or super-
index) denotes that an element belongs to a boundary. Contour points 
𝑣𝑏𝑚 are contour-wise ordered, meaning 𝑣𝑏𝑚’s contour neighbours are 
𝑣𝑏𝑚−1 and 𝑣𝑏𝑚+1. As contour points are homogeneously sampled (uniform 
spacing between them) and contour-wise ordered, sub-index 𝑚 acts as 
the discrete parameter of curve 𝜕𝛩. Contour points 𝑣𝑏𝑚 have associated 
position vectors 𝐯𝑏𝑚 ∈ R3 stacked in matrix 𝚅𝑏 ∈ R𝑀×3, 𝚅𝑏 = [(𝐯𝑏𝑚)

⊺].
Along contour 𝜕𝛩, grippers 𝛾𝑔 ∈ 𝛤 = {𝛾𝑔 , 𝑔 = 1,… ,G} are 

positioned. We approximate the object grasping by a single contact 
point per gripper. The grippers’ position vectors 𝜸𝑔 ∈ R3 allow us 
to define the single integrator dynamics as �̇�𝑔 = 𝐮𝑔 , where 𝐮𝑔 ∈ R3

is the control action. We want to define control actions 𝐮  so that 
𝑔

3 
the current contour 𝜕𝛩 acquires the target contour’s shape 𝜕�̄�. In this 
paper, elements of the target shape are denoted with a bar above. 
Therefore, we refer to the points belonging to the target contour 𝜕�̄�
as �̄�𝑏𝑞 ∈ 𝑉 𝑏 = {�̄�𝑏𝑞 , 𝑞 = 1,… , 𝑄}, with position vectors �̄�𝑏𝑞 ∈ R3 stacked 
in matrix �̄�𝑏 ∈ R𝑄×3, being �̄�𝑏 = [(�̄�𝑏𝑞)

⊺]. Note that 𝑀 and 𝑄 do 
not need to be the same and 𝑀 is not necessarily time constant as 
points are homogeneously sampled through iterations, e.g., if the object 
stretches 𝑀 will increase. We define a local reference 𝐓𝑚𝑤, �̄�𝑞𝑤 ∈ R4×4

with respect to the global reference frame for each of the current and 
target contour points (respectively). The local reference axes of each 
contour point 𝑣𝑏𝑚 (�̄�𝑏𝑞 respectively) are defined as (𝐱𝑚, 𝐲𝑚, 𝐳𝑚), with 𝐱𝑚
the contour’s tangent vector at point 𝑣𝑏𝑚; 𝐲𝑚 the locally normal surface 
vector at 𝑣𝑏𝑚; and 𝐳𝑚 orthonormal to 𝐱𝑚 and 𝐲𝑚. Note that these local 
frames of reference need to be coherent for a proper performance of the 
mapping method (2D surfaces present a surface normal on each side), 
we propose defining 𝐳𝑚 towards the sensor.

3. Elastic contour mapping

In this section we begin with an overview of our multi-scale Lapla-
cian descriptors, introduced in [18]. We then present the elastic map-
ping method with the assumption that contour parametrisation origins 
are favourable, i.e. that points 𝑣𝑏1 and �̄�𝑏1 constitute a good match. Then, 
we generalise our method to tackle unfavourable parametrisation origin 
points.

3.1. Multi-scale Laplacian descriptors

These descriptors are computed using contour point coordinates 
𝐯𝑏𝑚, �̄�

𝑏
𝑞 and their associated local references 𝐓𝑚𝑤, �̄�𝑞𝑤 (see Fig.  3). Two 

contour points are adjacent at scale 𝜆 when they lie within a con-
tour’s topological distance 𝑠𝜆 ∈ 𝑆 = {𝑠𝜆, 𝜆 = 1,… , 𝛬}. Distances 𝑠𝜆
increase uniformly with 𝜆 being 𝑠𝜆 = 𝜆 𝑟𝑣𝑜𝑥𝑒𝑙 and 𝑟𝑣𝑜𝑥𝑒𝑙 the 3D sensor’s 
resolution. The maximum topological distance between two contour 
points defines 𝑠𝛬. We use transforms 𝐓𝑚𝑤 to define local-coordinate 
multi-scale Laplacian surfaces 𝛺𝑥, 𝛺𝑦, 𝛺𝑧 ∈ R𝑀×𝛬 (see Section 3. A 
in [18]). Analogously, using �̄�𝑞𝑤 we can compute the target Laplacian 
surfaces �̄�𝑥, �̄�𝑦, �̄�𝑧 ∈ R𝑄×𝛬. In Fig.  4, Laplacian surfaces 𝛺𝑥, 𝛺𝑦, 𝛺𝑧
and �̄�𝑥, �̄�𝑦, �̄�𝑧 for a current and a target shape can be visualised. These 
surfaces constitute what we refer to as Multi-scale Laplacian descriptors 
(see [18] for detailed explanation).

3.2. Laplacian descriptor based FMM contour mapping

The Fast Marching Method (FMM) [24] solves the Eikonal equation
|

|

∇𝑇 (𝜃, �̄�)|
|

𝐹 (𝜃, �̄�) = 1, 𝜃 ∈ 𝜕𝛩, �̄� ∈ 𝜕�̄�, (1)

where 𝜃, �̄� ∈ R are the coordinates for the continuous parametrisation 
of contours 𝜕𝛩, 𝜕�̄�. We define this parametrisation so that values of 
𝜃 = 𝑚, �̄� = 𝑞 correspond to the location of the uniformly sampled 
points 𝑣𝑏𝑚, �̄�𝑏𝑞 on contours 𝜕�̄�, 𝜕𝛩 respectively (see Fig.  4). Eq. (1) is 
typically used to model the propagation of a surface front moving with 
a normal speed 𝐹 (𝜃, �̄�) and crossing a point (𝜃, �̄�) with a time cost of 
𝑇 (𝜃, �̄�). 𝑇 (𝜃, �̄�) can be seen as a cost function in which the cost of passing 
through point (𝜃, �̄�) translates in more travel time for higher 𝑇 (𝜃, �̄�)
values.

FMM has been used to perform curvature-based contour mapping 
between discrete curves with sub-resolution accuracy [25]. We propose 
an FMM contour mapping approach that considers curvature of 1D 
curves embedded in 3D and performs a multi-scale analysis by means of 
Laplacian surfaces 𝛺 as our descriptors. We will first define a discrete 
contour similarity surface 𝐅(𝑚, 𝑞) ∈ R𝑀×𝑄, i.e. the discrete equivalent 
of 𝐹 (𝜃, �̄�) in (1), that, by means of the FMM, provides us with our 
discrete assignation cost surface 𝐓(𝑚, 𝑞) ∈ R𝑀×𝑄, i.e. discrete equiv-
alent of 𝑇 (𝜃, �̄�). Using central differences, we then propose computing 
a continuous gradient descent path (𝜃) along surface 𝐓 that allows 
us to generate an elastic map that favours multi-scale geometrical 
resemblance between the current and the target contour.
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Fig. 4. Illustrative example of our FMM based elastic mapping process. Multi-scale Laplacian descriptors are computed for the current and target contour points 𝑣𝑏𝑚 , �̄�𝑏𝑞 along 
scale values 𝑠𝜆. The Laplacian descriptor’ components 𝛺𝑥 , 𝛺𝑦 , 𝛺𝑧 (current contour descriptors) and �̄�𝑥 , �̄�𝑦 , �̄�𝑧 (target contour descriptors) allow us to compute similarity surfaces 
𝐅𝑥(𝑚, 𝑞),𝐅𝑦(𝑚, 𝑞),𝐅𝑧(𝑚, 𝑞). The similarity surface 𝐅(𝑚, 𝑞) (obtained using 𝐅𝑥(𝑚, 𝑞),𝐅𝑦(𝑚, 𝑞),𝐅𝑧(𝑚, 𝑞)) provides the input for the MSFMM [23] which allows to compute the assignation-cost 
surface 𝐓(𝑚, 𝑞). In this figure, regarding Laplacian descriptors, a lighter tone denotes larger positive values and darker tones lower negative values. As for the similarity surface 
𝐅(𝑚, 𝑞), lighter tones imply more similarity between contour points. The continuous gradient descent path (𝜃) on 𝐓(𝑚, 𝑞) defines the elastic map.
.

3.3. Discrete speed function definition: the similarity surface

The discrete surface 𝐅 ∈ R𝑀×𝑄 (Fig.  4) represents the geometrical 
similarity between contour points 𝑣𝑏𝑚 and �̄�𝑏𝑞 at a multi-scale level. We 
define each element 𝐅(𝑚, 𝑞) : 
𝐅(𝑚, 𝑞) = ‖

‖

‖

(

𝐅𝑥(𝑚, 𝑞),𝐅𝑦(𝑚, 𝑞),𝐅𝑧(𝑚, 𝑞)
)

‖

‖

‖2
. (2)

Surface 𝐅𝑥 ∈ R𝑀×𝑄 acts as similarity matrix for component 𝑥 (in the 
local reference). Element (𝑚, 𝑞) of 𝐅𝑥 yields: 

𝐅𝑥(𝑚, 𝑞) =

( 𝛬
∑

𝜆=1

[

𝐖𝜆 ∗ 𝐄𝜆
𝑥(𝑚, 𝑞)

]

+ 𝛽

)−1

, (3)

where operator ∗ denotes the convolution product with wrap-around 
matrix edge handling (as current and target points constitute closed 
contours). We define parameter 𝛽 > 0 to ensure 𝐅𝑥(𝑚, 𝑞) > 0. More 
insight on 𝛽 will be provided in upcoming paragraphs. Discrete surface 
𝐄𝜆
𝑥 ∈ R𝑀×𝑄 contains the Laplacian error of mapping point 𝑣𝑏𝑚 to point 

�̄�𝑏𝑞 at scale 𝜆: 

𝐄𝜆
𝑥(𝑚, 𝑞) = |

|

�̄�𝑥(𝑞, 𝜆) −𝛺𝑥(𝑚, 𝜆)|| . (4)

Matrix 𝐖𝜆 ∈ R(2𝜆+1)×(2𝜆+1) in (3) is obtained as follows: 
𝐖𝜆 = 𝐇𝜆◦𝐆𝜆, (5)

where operator ◦ is the Hadamard product and matrix 𝐇𝜆 = blkDiag
(

𝟏𝜆×𝜆, 1, 𝟏𝜆×𝜆
)

, 𝐇𝜆 ∈ R(2𝜆+1)×(2𝜆+1). We denote 𝟏𝜆×𝜆 as a 𝜆 × 𝜆 all ones 
matrix. Matrix 𝐆𝜆(u, v) ∈ R(2𝜆+1)×(2𝜆+1) represents a discrete Gaussian 
function centred at (𝜆 + 1, 𝜆 + 1) and it is defined as: 

𝐆𝜆 = 1
2𝜋𝜎2

exp
(

−
(u − 𝜆 − 1)2 + (v − 𝜆 − 1)2

2𝜎2

)

, (6)

where u, v ∈ N are the matrix indices and 𝜎 = 𝜆∕
√

2. Similarly to 𝐄𝜆
𝑥, 

𝐄𝜆
𝑦 and 𝐄𝜆

𝑧 are computed, i.e. using the remaining components (𝑦 and 
𝑧) of the Laplacian Descriptors as in (4), and thus 𝐅𝑦(𝑚, 𝑞),𝐅𝑧(𝑚, 𝑞) can 
be obtained (see Fig.  4). Note that 𝐖𝜆 only varies with scale 𝜆 and not 
with spatial dimensions 𝑥, 𝑦, 𝑧. A representation of two matrices 𝐄𝜆

𝑦 and 
𝐆𝜆 is shown in Fig.  5.

In combination with the convolution product in (3), 𝐖𝜆 serves a 
two-fold purpose:

(1) It defines a discrete weight surface that applies a probability 
distribution on surface 𝐄𝜆

𝑥 in the neighbourhood of coordinates 𝑚 and 𝑞. 
The neighbourhood in 𝐄𝜆

𝑥 is defined by indexes within index boundaries 
(𝑚± 𝜆, 𝑞 ± 𝜆) as to be coherent with the scale analysis. The distribution 
𝐆𝜆 models the likelihood of how, given a match of points 𝑣𝑏𝑚 and �̄�𝑏𝑞 , 
the contour neighbours of 𝑣𝑏𝑚 will be matched to those of �̄�𝑏𝑞 . Note how 
matrix 𝐇𝜆 in (5) cancels both the second and the fourth quadrant of 
the Gaussian surface 𝐆𝜆 (see Fig.  5). This allows to disregard errors of 
4 
Fig. 5. Visualisation of the error surface 𝐄𝜆
𝑦 (𝑚, 𝑞) ≥ 0 and the matrix 𝐖𝜆 ≥ 0 for a 

given scale 𝑠𝜆. The colour tone intensity of the Laplacian descriptors 𝛺𝑦 , �̄�𝑦 represents 
larger (positive) values for lighter tones and lower (negative) values for darker tones. 
Note that surface 𝐖𝜆(u, v) = 0 on the second and fourth quadrants (dark tone).

non-injective matches in the neighbourhood of 𝑣𝑏𝑚 and �̄�𝑏𝑞 , i.e. we do not 
consider the cost of point matches that would surely imply mapping the 
same contour point twice.

(2) Through the convolution product, 𝐖𝜆 integrates the Laplacian 
error of mapping point 𝑣𝑏𝑚 to point �̄�𝑏𝑞 along with the probability-
weighted Laplacian error of their neighbouring points’ potential matches

Note how the summation term within (3) is always equal or greater 
than zero. Therefore, 𝛽 > 0 implies that the parenthesis term in (3) 
is always greater than zero, and thus 𝐅(𝑚, 𝑞) > 0. This is conceptually 
important as 𝐅(𝑚, 𝑞) in (2) represents a speed function and 𝐅(𝑚, 𝑞) ≤ 0
would imply an infinite or a negative time-cost for the front to prop-
agate through point (𝑚, 𝑞), both undesirable scenarios as that would 
mean that the wave front could stall or recede (i.e. it could generate 
non-injective matches).

We perform the Multi Stencil Fast Marching Method (MSFMM) [23] 
with 𝐅 as our input speed surface and obtain the discrete cost function 
𝐓 ∈ R𝑀×𝑄 (the MSFMM considers 8 neighbours per point in 𝐅).

We use central differences to compute a continuous gradient descent 
path (𝜃) on surface 𝐓 (from 𝐓(𝑀,𝑄) to 𝐓(1, 1)). Path (𝜃) can be 
regarded as a continuous function  ∶ R → R2 with current contour 
parameter 𝜃 as input and matched target contour parameter �̄� and map-
ping cost 𝑇 (𝜃, �̄�) as outputs. Each uniformly sampled current contour 
point 𝑣𝑏  has an associated parameter value of 𝜃 = 𝑚 and it is matched 
𝑚
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Fig. 6. On the left: elastic contour mapping process for inconveniently parametrised 
contours with first and last matching points (𝜃 = 1, �̄� = 1) and (𝜃 = 𝑀, �̄� = 𝑄)
(respectively). The first and last contour points are represented with larger circles 
and different colours. Large blue and orange circles for the first contour points (1, 1)
and small dark blue and yellow circles for the last contour points (𝑀,𝑄). Below, the 
extended surface �̂� is represented along with a gradient descent path ̂(�̂�) (red path) 
obtained from the �̂� surface. On the top right, the result for the contour mapping is 
displayed with lines linking current and target contour points. The well conditioned 
first match is represented with a large green circle and the new last contour point 
is displayed as a smaller dark green circle. Below, the �̂� and the gradient descent is 
represented again along with the obtention of ̂(�̂�𝑓𝑖𝑟𝑠𝑡). The semi-transparent green 
patch contains  , the well conditioned mapping path.  (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version 
of this article.)

to a target contour point with a parameter value �̄� obtained from: 
(𝜃 = 𝑚) = (�̄�, 𝑇 (𝑚, �̄�)). (7)

New discrete contour points �̄�𝑏𝑚 are retrieved from 𝜕�̄� according to the 
values of �̄� in (7) and thus the elastic contour mapping is defined. 
For each sampled (perceived) current contour point 𝑣𝑏𝑚 we obtained an 
elastically matched target contour point �̄�𝑏𝑚 (see Fig.  4).

3.4. Elastic contour mapping for closed contours

Performing a gradient descent from 𝐓(𝑀,𝑄) to 𝐓(1, 1) is equivalent 
to assuming that point matches (𝑣𝑏𝑀 , �̄�𝑏𝑄) and (𝑣𝑏1, �̄�𝑏1) are convenient, 
which, as seen in the contour parametrisation shown in Fig.  6, is 
not necessarily the case. A first matching point estimation method 
for closed contours is suggested in [25]. They propose performing a 
gradient descent on an extended similarity matrix (different from the 
one presented here). They state that such path contains the optimal 
mapping but they do not develop on how to retrieve it. In this paper, 
we propose generating matrix �̂� = 𝟏3×3 ⊗ 𝐅, �̂� ∈ R3𝑀×3𝑄 (instead of 
3𝑀 ×2𝑄, as it would be if we followed their approach in our problem) 
in order to facilitate the convergence of the gradient descent path ̂(�̂�)
down �̂� ∈ R3𝑀×3𝑄 in unfavourable cases (see Fig.  6). We use �̂� to refer 
to the parametrisation of ̂ on extended matrices �̂�. Furthermore, we 
propose retrieving the optimal mapping path  directly from ̂(�̂�). We 
can find �̂�𝑓𝑖𝑟𝑠𝑡 such that ̂(�̂�𝑓𝑖𝑟𝑠𝑡) = (𝑄, 𝑇 (�̂�𝑓𝑖𝑟𝑠𝑡, 𝑄)). We obtain (𝜃) as 
the segment of ̂(�̂�) defined by �̂� ∈ [�̂�𝑓𝑖𝑟𝑠𝑡, �̂�𝑓𝑖𝑟𝑠𝑡 +𝑀]. We also propose 
using �̂�𝑓𝑖𝑟𝑠𝑡 from one iteration to re-parametrise the contour points of 
the next iteration and thus enhance convergence to the optimal path 
through iterations.

Regarding parameter 𝛽 > 0 in (3), 𝛽 has an impact on how much the 
mapping cost 𝐓(𝑚, 𝑞) increases when coordinates (𝑚, 𝑞) lie far away from 
the values along the diagonal that goes from (1, 1) to (𝑀,𝑄). The larger 
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𝛽, the higher the cost of deviating from an homogeneous mapping path 
(i.e., with a very large 𝛽, a path  would run along the diagonal). 
However, our method needs to effectively deviate from the diagonal 
when contour parametrisation is not favourable. This requires our 𝛽 to 
take low values (𝛽 ≈ 0.001) as to allow ̂ to deviate from the diagonal 
(when necessary) and to converge to point matches that result in lower 
overall cost.

The elastic mapping method proposed here is performed at each 
iteration during the shape control process and constitutes a key element 
for the definition of a suitable shape control reference. Note that the 
proposed Laplacian-based descriptors are intrinsic and thus remove 
the dependence on the shape’s embedding. This is something of great 
interest for shape analysis as, through the FMM, the proposed descrip-
tors allow to define a contour mapping that is completely independent 
(decoupled) from other embedding-dependent metrics (such as pure 
global–local translation, rotation, or Procrustes distance).

4. Simulations and experiments

This section illustrates the applicability of the proposed Multi-
scale elastic contour mapping in a shape control application. We con-
ducted several simulations and experiments using our contour mapping 
method as input for the basic shape control strategy outlined in Ap-
pendix. In this framework, the discrete control law in (A.8) defines 
robot actions with magnitudes proportional to the shape error module 
so that they effectively prevent overshooting, ensuring safe conver-
gence for a given gripper configuration (see Lemma  A.1), as proven 
in Theorem  A.8.

4.1. Simulation results

We have performed several simulations using the As Rigid As Pos-
sible (ARAP) model [15] to simulate the object’s response to our 
control law (A.8), as it fits our purpose of manipulating large-strain 
objects. We present 4 simulations that constitute several scenarios for 
the application of the shape control strategy (find more simulations on 
the accompanying video). Figs.  7 and 8 contain two simulations each, 
with 6 column-wise graphics per simulation.

In the first two rows, the initial and final state of the object is 
shown with a red triangular mesh. In both cases the target contour 
is also shown in blue and the mapping between the current and the 
target contour is displayed with thin grey lines. Just below these two 
graphics the similarity surfaces 𝐅 corresponding to the initial and final 
time instants are shown. In the similarity surface warmer colours rep-
resent higher similarity while colder colours represent lower similarity 
between contour points. The gradient descent path  is displayed in 
red. Note that the contours have been re-parametrised at every iteration 
(using the method in Section 3.4) so that path  and surface 𝐅 are easier 
to interpret in the figures (i.e.  goes from the upper right corner to the 
lower left corner of 𝐅). We refer to 𝐅 after shifting the current contour 
points indexes (𝑚) as 𝐅𝑠ℎ𝑖𝑓 𝑡𝑒𝑑 . The first current and target contour points 
in the 𝐅𝑠ℎ𝑖𝑓 𝑡𝑒𝑑 surface approximately correspond to the leftmost points 
of the figures above. Plots on the fifth row display the contour point 
error module ‖𝐄‖, as defined in (A.5), in [mm] (red colour) along 
with the relative stretching of the simulation mesh edges (blue colour). 
Both display the mean value (dashed line) and the standard deviation 
(shaded area). The remaining plot shows the action of the grippers 
�̇�𝑔,𝑥, �̇�𝑔,𝑦, �̇�𝑔,𝑧 (red, green and blue) in [mm/s]. All target shapes in the 
simulations were arbitrarily defined thus feasibility was not ensured, 
i.e. there was no certainty of achieving all-zero components on the error 
distribution.

In the first simulation in Fig.  7, a shape control task involving 
geometric features at large and intermediate scales is presented. The 
values along the diagonal of the 𝐅𝑠ℎ𝑖𝑓 𝑡𝑒𝑑 surface presents larger similar-
ity values after the shape control task has taken place. In this simulation 
grippers are conveniently positioned and thus the error can be highly 
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Fig. 7. Two simulations for the same shape control problem with different gripper 
configuration: a favourable one (left column) and an inconvenient one (right column). 
See Section 4.1 for a detailed explanation of the figure. The first two rows display 
the object’s mesh (red), target contour (blue), and the mapping (grey). On the object’s 
mesh, the 3 actuation points are represented with black squares. Below these, the 
similarity surfaces 𝐅𝑠ℎ𝑖𝑓𝑡𝑒𝑑 are shown, where warmer colours indicate higher similarity, 
along with the gradient path  (red). The fifth row presents the contour error (mean 
and standard deviation in solid and shaded red) and mesh-edge stretching (mean and 
standard deviation in dashed and shaded blue). Finally, the last plot illustrates the 
gripper actions, with red, green, and blue lines representing the x, y, and z components, 
respectively.  (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

reduced. To test the system in a less favourable scenario, the second 
column in Fig.  7 presents a less convenient gripper configuration. Al-
though the error cannot be as highly reduced as in the first simulation, 
the control strategy manages to provide a suitable solution. The higher 
stress generated by the unfavourable gripper positioning is reflected 
in the object deformation plot, where the standard deviation of mesh 
strain almost doubles with respect to the one in the first column.

The two simulations in Fig.  8 demonstrate our mapping and shape 
control framework applied to 3D shapes using three grippers. The first 
simulation involves a U-shaped bar, while the second features a T-
shaped object with geometric features at diverse scales. These diverse 
scales refer to features of varying relative sizes within the overall shape: 
a large main bar, a medium-sized appendix, and small-scale curvatures 
6 
Fig. 8. Two simulations are presented, each addressing a 3D shape control problem 
involving three grippers. The first simulation (left) illustrates a 3D U-shaped bending 
process. The second simulation (right) focuses on manipulating an object with geometric 
features at varying scales, including two symmetric ends and a shorter, thinner 
appendix. For a detailed explanation of the elements depicted in the graphs and plots, 
refer to Section 4.1.  (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)

at the ends and junctions of the T-shape. The 3D multi-scale analysis 
of our method effectively analyses and considers this feature richness 
when computing the elastic map.

4.2. Experimental setup

The experimental setup (Fig.  9) consists of 5 elements: two robotic 
arms, the deformable object that is being controlled, an RGB-D camera 
and a spotlight. The robotic arms are the PhantomX model with 12 A 
Dynamixel servos that allow to perform position control. These robotic 
arms have 4 spatial degrees of freedom and one extra degree of freedom 
for opening or closing the grippers. The camera is the IntelRealsense 
D-435. The object segmentation has been performed on the RGB video 
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Fig. 9. Experimental setup. The elements that constitute the setup are two PhantomX 
robotic arms holding a deformable object, an Intel Realsense D435 RGB-D camera and 
a light with a diffuser. The world reference axes, positioned at the camera’s optical 
centre, are displayed as well. The world reference 𝑍 axis is aligned with the camera’s 
optical axis and points backwards with respect to the orientation of the camera. The 𝑋
and 𝑌  axes are contained in the image plane (approximately parallel to the 2D object 
plane).

images by segmenting the object’s colour in the CIELab space as it 
constitutes a perceptually uniform colour space. The object’s depth 
with respect to the camera has been retrieved from the RGB-aligned 
depth map. The global reference axes are positioned at the optical 
centre of the RGB camera and oriented as shown in Fig.  9, where the 
RGB (red, green and blue) colours correspond to the 𝑋, 𝑌 ,𝑍 global 
axes. Our elastic mapping method, implemented in MATLAB with C++ 
(MEX), processes ∼100 contour points across 15 scales in about 10 ms 
(experiments were conducted on an Intel(R) Core(TM) i7-8565U CPU 
with 1.99 GHz and 16 GB of RAM). This processing time provides 
adequate online capacity for other processes, allowing tasks such as 
segmentation, contour extraction, and control action computation to 
be performed at loop camera rates of 20–30 Hz.

Our control strategy defines actions in R3 and thus only position 
commands are transmitted to the grasped points. This means that the 
grasped points must be free to rotate in any direction around the 
gripper’s contact point. The PhantomX grippers perform a full-contact 
grasp that does not provide the three rotational degrees of freedom. By 
traversing the deformable objects with rods and making the grippers 
grasp the rods perpendicularly (see Fig.  10), we were able to release 
the rotation of the object in one plane. Therefore, the setup meets the 
design requirements of our control system for those deformations that 
take place in the plane defined by the robot grippers when they face 
each other (as they are set in Fig.  9).

4.3. Experimental results

In this section, we address challenges associated with real data, 
including noise and non-ideal segmentation. While explicit occlusion 
handling is beyond the scope of this work, our multi-scale approach ef-
fectively mitigates issues such as noise and gripper-induced occlusions, 
ensuring proper mapping.

We present 6 experiments that represent several scenarios for the 
application of the shape control strategy. Each experiment is presented 
through 8 column-wise graphics. See, for example, Fig.  12), where 
the first 4 rows show a sequence of different illustrative time instants 
during the deformation process (in chronological order). On these 
frames the current contour segmentation and the target contour are 
7 
Fig. 10. Grasping of the objects. The deformable object is pierced by a thin rod 
(represented in red) so that it can freely rotate in the plane defined by the two grippers.

Fig. 11. Comparison of inferred deformation cost distributions between homogeneous 
(conventional) and elastic (proposed) mapping methods across the six experiments, 
in order of appearance, of Figs.  12 and 13. The box-charts show the deformation 
cost distribution along the contour, with the elastic mapping generally performing 
better (lower deformation costs), especially in cases with significant elastic deformations 
(e.g., Exp. 4).

Table 1
 Comparison of the mean (�̄�MSN) and standard deviation (𝜎MSN) of inferred deformation 
costs for homogeneous and elastic mapping methods across the six experiments. 
Bold (larger) values in the mean cost indicate the best performance. Narrower cost 
distributions indicate uniform deformation across the object, while wider distributions 
show deformation concentrated in specific object regions. 
 Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 
 
�̄�MSN

Homog. 8.71 7.03 5.82 11.18 2.40 5.00  
 Elastic 6.89 6.52 5.72 5.48 2.23 4.86  
 
𝜎MSN

Homog. 2.52 3.04 1.45 6.82 0.86 2.47  
 Elastic 3.04 3.26 1.54 2.02 0.78 2.65  

represented in red and blue respectively. Our proposed multi-scale 
contour mapping is displayed with thin grey lines, the gripper positions 
are displayed with green squares and a white number identifying them 
(grippers 1 and 2). In the fifth and sixth rows both the initial and 
final 𝐅𝑠ℎ𝑖𝑓 𝑡𝑒𝑑 surfaces and their corresponding assignation paths  are 
shown. In the seventh row a plot displays the boundary error ‖

‖

𝐄𝑘
‖

‖

. 
The boundary error ‖

‖

𝐄𝑘
‖

‖

, expressed in millimetres, is represented by its 
mean value (red line) and the range covered by its standard deviation 
(shaded regions). The last row shows, in millimetres, the components 
of the actions of both grippers: 𝛥𝜸𝑔,𝑥, 𝛥𝜸𝑔,𝑦, 𝛥𝜸𝑔,𝑧 (red, green and blue 
respectively) with respect to the world reference that is displayed in 
Fig.  9.

The first experiment (first column in Fig.  12) is a case of large-
scale deformation in which a long polyethylene bar is bent. In this first 
experiment, the grippers are conveniently positioned. However, in the 
second column of Fig.  12, the same shape control problem is solved but 
with unfavourable gripper positions. The control system still manages 
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Fig. 12. Two experiments involving the same shape control problem with favourable 
(left) and inconvenient (right) gripper configurations. See Section 4.3 for a detailed 
explanation of the elements that constitute graphs and plots.  (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version 
of this article.)

to obtain the target shape (with larger final error). In Fig.  13 the first 
column constitutes a deformation case in which the polyethylene bar 
is deformed with a very inconvenient gripper configuration (half of the 
bar is cantilevered). The next experiment (second column in Fig.  13) 
involves the stretching process of a wrinkled paper napkin in which the 
horizontal axis data in 𝐅𝑠ℎ𝑖𝑓 𝑡𝑒𝑑 expands as the object is stretched and 
more contour points are retrieved in each frame. In the third column 
of Fig.  13, as a task related to food manipulation, a piece of banana 
8 
skin is placed back to its original position on the banana. Finally, the 
last column in Fig.  13 constitutes a case of a local deformation process 
carried out on a sponge with a hole. It is particularly interesting to see 
how the assignation path  loses curvature until it practically becomes 
a straight line, indicating greater similarity between the final shape and 
the target shape.

Fig.  11 and Table  1 present a comparison of our proposed elastic 
mapping method with the standard homogeneous mapping method 
(e.g., as in [12,17]) for each shape control tasks. They are evaluated 
using a deformation cost metric derived from the multi-scale Laplacian 
(curvature) error 𝐸MSN as defined in [26]. That is, for each shape 
control task, the deformation cost that each mapping method gen-
erates is quantified. The results, which include the deformation cost 
distributions (𝐸MSN), mean (�̄�MSN), and standard deviation (𝜎MSN), 
provide insight into the deformation inferred by each mapping method. 
Larger mean values (�̄�MSN) indicate greater overall deformation, while 
the dispersion of the distribution (𝜎MSN) reveals how this deformation 
cost is applied: narrower cost distributions imply more homogeneously 
widespread deformation all over the object, whereas wider cost distri-
butions indicate that deformation is concentrated on the specific parts 
of the object. The elastic mapping demonstrates superior performance 
compared to the homogeneous mapping by inferring lower overall 
deformation costs. It achieves this through estimating concentrated 
yet effective deformations, especially in scenarios involving significant 
elastic deformations (e.g., Experiment 4). Nonetheless, even in near-
isometric cases (e.g., Experiment 6), although by a smaller margin, the 
elastic method still demonstrates superior performance. To ensure a fair 
comparison, the initial parametrisation points for both methods were 
optimally determined using our elastic mapping framework, offering a 
favourable starting point for the homogeneous method.

The qualitative improvements with respect to [18] are also reflected 
in the experiment’s results. For example, the smoothness of our elastic 
map and its ability to avoid infeasible matches are illustrated in the 
𝐅𝑠ℎ𝑖𝑓 𝑡𝑒𝑑 surfaces, where patterns that would lead to abrupt path changes 
or to non-injective paths do not emerge. In contrast, [18] leads to 
similarity surfaces with patterns exhibiting sudden changes and infinite 
or negative slopes relative to the main diagonal, which result in locally 
non-injective paths  . To ensure injectivity under these conditions, 
users would need to employ very large values of 𝛽 (e.g., 𝛽 > 10), 
potentially overlooking non-isometric deformations and diminishing 
the advantages of the elastic mapping method. Furthermore, the au-
tomatic definition of initial matching points is consistently validated 
in experiments by gradient descent trajectories (i.e., paths ) reliably 
aligning and following the main diagonal of the comparison surface 𝐅. 
For additional insights into these experiments and simulations, we refer 
the reader to the accompanying video.

5. Conclusions

In this paper we have proposed an FMM-based multi-scale contour 
mapping for shape control. Through simulations and experiments with 
a proposed basic shape control system, we validate the use and appli-
cability of our novel multi-scale elastic mapping method. Our elastic 
contour mapping method successfully allowed to handle diverse shape 
control tasks using a basic deformation model and control approach. 
This suggests its applicability in more advanced shape control strate-
gies described in existing literature (e.g. strategies involving a finer 
identification of the deformation model). It would also be interesting 
to explore a generalisation to higher dimensions of the elastic map-
ping method presented here. Another potential future direction is to 
benchmark existing shape control methods with and without our elastic 
mapping to assess performance improvements, though this would re-
quire addressing challenges in implementation. Additionally, exploring 
dynamic gripper repositioning during the manipulation process could 
potentially reduce shape error.
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Fig. 13. Four experiments involving different materials and deformation cases, from left to right: polyethylene bar being bent with unfavourable gripper configuration, wrinkled 
napkin being stretched, banana skin being placed back to its original position and sponge undergoing local deformation. See Section 4.3 for a detailed explanation of the elements 
that constitute graphs and plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Appendix. Shape control strategy

In this appendix we introduce a basic deformation model and a 
control law to validate the applicability to shape control of our pro-
posed FMM-based elastic mapping. The model is motivated by the 
concept of diminishing rigidity presented in [7] and also includes an 
object segmentation into regions that constitute an approximation of 
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the gripper’s influence. This makes the control law presented here more 
robust to unfavourable gripper configurations in comparison to our 
previously proposed control law [18], which constitutes a more local 
approach.

A.1. Object deformation model

The model proposed here is acquired by analysing the geometry 
and the gripper configuration of the at-rest state of the elastic object 
(neither stretched nor compressed). The model approximates the extent 
to which object points respond to a gripper action on a rigid manner 
when lying at a specific topological distance from the gripper. Points’ 
rigid response decreases as they lie further away from the grippers. 
Recall that the gripper dynamics is modelled by a single integrator 
�̇�𝑔 = 𝐮𝑔 = (𝑢𝑔,𝑥, 𝑢𝑔,𝑦, 𝑢𝑔,𝑧), being �̇�𝑔 the gripper’s velocity. Given node 𝑣𝑛
and an action 𝐮𝑔 on gripper 𝛾𝑔 , we model 𝑣𝑛’s velocity �̇�𝑛 ∈ R3 caused 
by 𝐮𝑔 as: 

�̇�⊺𝑛 = 𝐉(𝑛, 𝑔)𝐮⊺𝑔 , (A.1)

where 𝐉(𝑛, 𝑔) ∈ R3×3 is 𝐉(𝑛, 𝑔) = 𝐽 (𝑛, 𝑔) 𝐈3. Being 𝐈3 ∈ R3×3 the identity 
matrix and 𝐽 (𝑛, 𝑔): 

𝐽 (𝑛, 𝑔) ∶=

{

exp (− 𝑑𝑚𝑖𝑛(𝑛)
𝑑𝑚𝑎𝑥

) ; if 𝑑(𝑛, 𝑔) = 𝑑𝑚𝑖𝑛(𝑛)

0 ; otherwise.
(A.2)

To compute the velocities of all the object points we define matrix 
 ∈ R3𝑁×3𝐺 as  = [𝐉(𝑛, 𝑔)]. Distance 𝑑(𝑛, 𝑔) in (A.2) is the geodesic 
distance (along the object’s surface 𝛩) between gripper’s 𝛾𝑔 at-rest 
positions 𝜸𝑔(𝑡0) ∈ R3 and 𝑣𝑛’s at-rest position 𝐯𝑛(𝑡0) ∈ R3. Geodesic 
distance 𝑑𝑚𝑖𝑛(𝑛) = min(𝑑(𝑛, 1),… , 𝑑(𝑛,𝐺)) represents the minimum 
distance from 𝑣𝑛 to any gripper 𝛾𝑔 in the at-rest configuration of 
the object. The furthest an object point is from its nearest gripper is 
𝑑𝑚𝑎𝑥 = max(𝑑𝑚𝑖𝑛(1),… , 𝑑𝑚𝑖𝑛(𝑁)). Term 𝐽 (𝑛, 𝑔) defines an object surface 
segmentation that keeps track of which points’ dynamics are being 
dominated by each gripper.

The velocities �̇�𝑛 of each of the object points are stacked in the 
column vector V̇ ∈ R3𝑁 , V̇ =

[

(v̇1)⊺,… , (v̇𝑁 )⊺
]⊺ and are defined as: 

�̇�(𝑡) = 𝐔(𝑡) =  Γ̇(𝑡), (A.3)

where matrix 𝐔 ∈ R3𝐺 ,𝐔 =
[

(𝐮1)⊺,… , (𝐮𝐺)⊺
]⊺ stacks all the action 

vectors 𝐮𝑔 in a column matrix. Matrix 𝚪 ∈ R3𝐺 ,𝚪 =
[

(𝜸1)⊺,… , (𝜸𝐺)⊺
]⊺

stacks gripper positions and, given our single integrator dynamics, 
Γ̇ = 𝐔. Regarding (A.3), the object state over time (given at-rest 
configuration 𝐕(𝑡0)) yields: 
𝐕(𝑡) = 𝐕(𝑡0) +  (Γ(𝑡) − Γ(𝑡0)), (A.4)

where initial gripper state Γ(𝑡0) is determined from the gripper posi-
tions in the at-rest object state. Note that   does not change with time: 
we are modelling elastic deformations and time changing values of 
would be representing elasto-plastic deformations.

A.2. Control law

We define matrix 𝑏 ∈ R3𝑀×3𝐺 ,𝑏 = 𝐒  as the matrix defining the 
contour points kinematics. Matrix 𝐒 ∈ R3𝑀×3𝑁  acts as a selector matrix 
that retrieves the rows from   that define contour points velocity 
components. Note that, if contour points 𝑉 𝑏(𝑡)’s indexes 𝑚 = 1,… ,𝑀
are equal to the first 𝑀 indexes in 𝑉 , matrix 𝐒 = [𝐈3𝑀 , 𝟎3𝑀×3(𝑁−𝑀)]. 
From now on time dependence notation is omitted when it can be easily 
inferred.

The error 𝐞𝑚 ∈ R3 for a contour point 𝑣𝑏𝑚 with its matched target 
contour point �̄�𝑏𝑚 is 𝐞𝑚 = 𝐯𝑏𝑚 − �̄�𝑏𝑚, being 𝐯𝑏𝑚, �̄�𝑏𝑚 ∈ R3 the position vectors 
of 𝑣𝑏𝑚, �̄�𝑏𝑚 respectively. All of the error vectors 𝐞𝑚 are stacked column-
wise in 𝐄 ∈ R3𝑀 ,𝐄 =

[

(𝐞1)⊺,… , (𝐞𝑀 )⊺
]⊺. The equation that defines error 

𝐄 with respect to time is: 
𝐄(Γ(𝑡)) = 𝐕𝑏(Γ(𝑡)) − �̄�𝑏, (A.5)
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where 𝐕𝑏 ∈ R3𝑀  stacks vectors 𝐯𝑏𝑚 as 𝐕𝑏 =
[

(𝐯𝑏1)
⊺,… , (𝐯𝑏𝑀 )⊺

]⊺ and, sim-
ilarly, �̄�𝑏𝑚 are stacked in �̄�𝑏 ∈ R3𝑀 , �̄�𝑏 =

[

(�̄�𝑏1)
⊺,… , (�̄�𝑏𝑀 )⊺

]⊺. Assuming 
constant reference �̄�𝑏, the error (A.5) derivative is 
�̇�(𝑡) = 𝑏Γ̇(𝑡), (A.6)

regarding (A.6), our control law yields: 
𝐔 = Γ̇ = − +

𝑏 𝐄(Γ), (A.7)

where  +
𝑏  is the Moore–Penrose left pseudo-inverse. We propose the 

discrete equivalent for (A.7): 
𝐔𝑘 = 𝛥Γ𝑘 = −𝜉 +

𝑏 𝐄(Γ𝑘), (A.8)

where 𝑘 ∈ N denotes the iteration number and 𝜉 ∈ R, 𝜉 > 0 the step-
length. A stability analysis of the discrete system (A.8) (involving the 
choice of 𝜉) is presented below.

A.3. Stability analysis of the proposed control system

In this appendix we begin by providing stability analysis of the 
continuous system constituted by (A.6) and control law (A.7). Then, we 
analyse the stability conditions for the error system (A.6) and control 
law (A.8) (discrete analogous of (A.7)).

Lemma A.1.  Error function 𝐄(Γ) ∶  ⊂ R3𝐺 → R3𝑀  is continuous 
differentiable as 𝑏 constitutes its Fréchet derivative ∀ Γ ∈ .

Proof.  By definition of Eq.  (A.6).

Proposition A.2.  Function 

(Γ) = 1
2
‖𝐄(Γ)‖2 − 1

2
‖

‖

𝐄(Γ∗)‖
‖

2 . (A.9)

is a Lyapunov function for the continuous system constituted by (A.6) and 
(A.7), being Γ∗ an equilibrium point.

Proof. (Γ∗) = 0 and (Γ) > 0 ∀Γ ≠ Γ∗. Given Lemma  A.1, 
𝐄(Γ) is continuous differentiable and for Γ(𝑡) any solution to (A.7), 
𝑑 (Γ(𝑡))∕𝑑𝑡 is: 
𝑑
𝑑𝑡

(Γ(𝑡)) = −𝐄⊺𝑏
+
𝑏 𝐄, (A.10)

where, for clarity, the dependence on Γ(𝑡) of the right-hand side terms 
has been omitted. In (A.10), 𝑏

+
𝑏  is the orthogonal projector on 

the column space of 𝑏 and thus is positive semi-definite, therefore 
𝑑 (Γ(𝑡))∕𝑑𝑡 ≤ 0.

Lemma A.3.  The smallest nonzero eigenvalue of  ⊺
𝑏 𝑏, 𝛼(Γ), is bounded 

away from zero by 1 ∀ Γ ∈ . Where  is an open convex set such that 
𝐄(Γ) ∶  ⊂ R3𝐺 → R3𝑀 .

Proof.  Each gripper 𝑔 has three associated identical eigenvalues 𝛼𝑔 for 
 ⊺
𝑏 𝑏. As a contour point 𝑣𝑏𝑚 can only be grabbed by one gripper 𝛾𝑔 , 
these eigenvalues can be computed as: 

𝛼𝑔 =
𝑀
∑

𝑚=1
𝐽 2(𝑚, 𝑔). (A.11)

Regarding the smallest possible value of 𝛼𝑔 , the worst-case scenario 
would imply every 𝐽 (𝑚, 𝑔) = 0 for every contour point except for 
the gripper’s contour point, which always presents 𝐽 (𝑚, 𝑔) = 1 (recall 
definition of 𝐽 (𝑚, 𝑔) in (A.2)). In the worst-case scenario, (A.11) would 
result in 𝛼𝑔 = 1 implying 𝛼(Γ) ≥ 1 ∀ Γ ∈ . This not only holds 
for the proposed function (A.2) but also for any function that may 
be considered as object deformation model as long as it presents non-
increasing values (with respect to increasing gripper-to-point topologi-
cal distances) and as long as such values are not time-varying (i.e., the 
object behaves purely elastically and no elasto-plastic deformations 
take place).
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Proposition A.4.  Let  ⊺
𝑏 𝐄(Γ) be Lipschitz continuous (Lemma  A.1) with 

constant 𝐾 on compact set  and let constant 𝑐 > 0, 𝑐 ∈ R, be independent 
of Γ(𝑡) such that 
−𝑑∕𝑑𝑡 ≥ 𝑐 ‖‖

‖

 +
𝑏 𝐄‖‖

‖

. (A.12)

Then, (Γ) in (A.9), which is Lyapunov for the continuous system consti-
tuted by (A.6) and (A.7) (Proposition  A.2), is also Lyapunov for the system 
constituted by (A.6) and the discrete control law (A.8) given step-lengths 
𝜉 ∈ (0, 2𝑐∕𝐾).

Proof. Proposition  A.4 constitutes a direct application of Theorem 2.6 
in [27]. We need to prove that, for Γ ∈ , if Γ ≠ Γ∗ and 𝜉 ∈ (0, 2𝑐∕𝐾), 

(Γ − 𝜉 +
𝑏 𝐄(Γ)) ≤ (Γ) (A.13)

is satisfied. This is equivalent to proving (A.12) holds. Substituting 
(A.10) and expanding the right-side term, (A.12) yields: 
𝐄⊺𝑏

+
𝑏 𝐄 ≥ 𝑐 𝐄⊺ +

𝑏
⊺ +

𝑏 𝐄, (A.14)

with 𝑐 > 0. Since 𝑏 =  +
𝑏

⊺ ⊺
𝑏 𝑏, (A.14) is equivalent to: 

(𝐄⊺ +
𝑏

⊺) ⊺
𝑏 𝑏(

+
𝑏 𝐄) ≥ 𝑐 𝐄⊺ +

𝑏
⊺ +

𝑏 𝐄. (A.15)

Therefore, (𝐄⊺ +
𝑏

⊺) ⊺
𝑏 𝑏(

+
𝑏 𝐄) > 𝑐 𝐄⊺ +

𝑏
⊺ +

𝑏 𝐄 holds when 𝑐 > 𝛼(Γ), 
being 𝛼(Γ) the smallest nonzero eigenvalue of  ⊺

𝑏 𝑏. 𝛼(Γ) must be 
uniformly bounded away from zero ∀ Γ ∈ . In particular, given 
Lemma  A.3, 𝛼(Γ) ≥ 1 ∀ Γ ∈ . Given the Lipschitz condition and by 
Ortega and Rheinboldt ([28], Theorem 3, 2.12), condition in (A.13) 
holds when 𝜉𝑐 > 𝐾𝜉2∕2, therefore (A.12) holds for step-lengths 𝜉 ∈
(0, 2𝑐∕𝐾).

Lemma A.5.  There is a unique error state 𝐄(Γ) for each gripper state Γ. 
That is, function 𝐄(Γ) is injective (𝐄(Γ1) = 𝐄(Γ2) implies Γ1 = Γ2).

Proof.  Note that deformation model (A.3)–(A.4), with error dynamics 
(A.6), determines the feasible error states. That is, the deformation 
model only allows to reach 𝐄(𝑡) within the image domain 𝐄[Γ] =
{𝐄(Γ) in (A.5) ∶ ∀Γ ∈ R3𝐺}, therefore 𝐄[Γ] ⊂ R3𝑀 . Considering (A.4) 
and (A.5), we can analyse 𝐄(𝑡):
𝐄(𝑡) = 𝐄(𝑡0) + 𝑏

(

Γ(𝑡) − Γ(𝑡0)
)

,

with 𝑏 =
(

𝐈3𝑀◦
(

𝟏⊺3𝑀 ⊗ (𝑏𝟏3𝐺)
)) (

 ⊗ 𝐈3
)

. (A.16)

Where operators ◦ and ⊗ denote the Hadamard and the Kronecker 
product, respectively. In (A.16), 𝟏3𝑀  and 𝟏3𝐺 are column vectors of 
ones and matrix  ∈ R𝑀×𝐺 is defined by elements 𝑠𝑚,𝑔 = 1 when 
𝐽 (𝑚, 𝑔) > 0 and 𝑠𝑚,𝑔 = 0 otherwise. Note that only one element 
per row of  is non-zero and thus ( ⊗ 𝐈3

) (

Γ(𝑡) − Γ(𝑡0)
) replicates 

and vertically stacks elements of (Γ(𝑡) − Γ(𝑡0)
)

. This means that term 
(

 ⊗ 𝐈3
) (

Γ(𝑡) − Γ(𝑡0)
) constitutes an injective function for Γ(𝑡). On 

the other hand, (𝐈3𝑀◦
(

𝟏⊺3𝑀 ⊗ (𝑏𝟏3𝐺)
)) is a definite positive diagonal 

matrix (invertible) and thus constitutes a bijection. The composition of 
an injection and a bijection renders (A.16) an injective map between Γ
and 𝐄, that is, there is a unique error state 𝐄(Γ) for each Γ.

Lemma A.6.  Gripper state Γ∗ such that  ⊺
𝑏 𝐄(Γ

∗) = 0 is unique.

Proof.  Regarding (A.4) and (A.5), the evolution of  ⊺
𝑏 𝐄(Γ) with respect 

to Γ(𝑡) can be expressed as 
 ⊺
𝑏 𝐄(Γ(𝑡)) =  ⊺

𝑏 𝐄(𝑡0) +  ⊺
𝑏 𝑏(Γ(𝑡) − Γ(𝑡0)), (A.17)

with 𝐄(𝑡0) the error state when the object is in its at-rest configuration 
(i.e., 𝐄(𝑡0) = 𝐕𝑏(𝑡0)−�̄�𝑏). Since  ⊺

𝑏 𝑏 in (A.17) is a diagonal matrix with 
all positive values (i.e., positive definite and thus invertible) system 
(A.17) presents uniqueness of solution Γ∗ for which  ⊺

𝑏 𝐄(Γ
∗) = 𝟎. 

Therefore, given an object with at-rest error state 𝐄(𝑡 ) and model 
0
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𝑏 determined by both the at-rest shape 𝐕(𝑡0) and the initial gripper 
configuration Γ(𝑡0), Γ∗ constitutes the unique solution to  ⊺

𝑏 𝐄(Γ
∗) =

0. Recall 𝐄(Γ) cannot be arbitrary, the feasible states of 𝐄(Γ) are 
determined by model (A.3)–(A.4) that leads to error dynamics (A.6) 
(Lemma  A.5).

Lemma A.7.  Matrix 𝑏 has constant rank on .

Proof.  There is always at least 𝐺 fully actuated contour points, i.e. the 
contour points grabbed by the grippers (being 𝐺 constant). These points 
always present 𝑑𝑚𝑖𝑛(𝑛) = 0 and thus, given (A.2), 𝐉(𝑛, 𝑔) for gripper 
points is always 𝐉(𝑛, 𝑔) = 𝐈3, which ensures 𝑏 has always full rank 3𝐺
(i.e. constant rank).

Note that the proposed analysis allows for a broader scope of 
application than the linear model considered in Appendix  A.1, as it 
can encompass non-linear models (provided that they meet the re-
quirements set out herein, in particular Lemmas  A.1, A.3, A.5, A.6 and
A.7).

The following Theorem for global asymptotic stability of the system 
(A.6) and (A.8) is an adaptation of Theorem 3.3, in [27].

Theorem A.8.  Let 𝐄(Γ) ∶  ⊂ R3𝐺 → R3𝑀  be continuous differentiable 
(Lemma  A.1) and  ⊺

𝑏 𝐄 be Lipschitz continuous on the open convex set . 
Let 𝑏 have constant rank on  and  ⊂ , = {Γ ∶  ⊺

𝑏 𝐄(Γ) = 𝟎} be 
bounded. Then there is constant 𝜉 such that any limit point from the discrete 
sequence defined by the discrete control law (A.8) from any Γ𝑘 ∈ , using 
step-lengths 𝜉 ∈ (0, 2𝑐∕𝐾), is a member of . Furthermore, regarding model 
(A.3)(A.4) with error dynamics (A.6), set  is only constituted by one 
equilibrium point Γ∗ that leads to a unique error equilibrium 𝐄(Γ∗).

Proof.  Given Lemma  A.7 𝑏 has constant rank on , since  in (A.9) is 
a Lyapunov function on  for (A.8) (Proposition  A.4) and  is bounded, 
uniformity conditions on  and  +

𝑏 𝐄 are ensured. These conditions 
allow for the application of Theorem 2.9 from [27] which proves that, 
for any Γ ∈ , the sequence defined in (A.8), with 𝜉 ∈ (0, 2𝑐∕𝐾), 
converges to . Set  is constituted by a unique gripper state Γ∗

(Lemma  A.6) and, since 𝐄(Γ) is an injective function (Lemma  A.5), 
the error equilibrium 𝐄(Γ∗) associated to Γ∗ is also unique. Given 
uniqueness of 𝐄(Γ∗), we conclude global asymptotic stability of the 
system constituted by the error system (A.6) and the discrete control 
law (A.8).

Remark A.9.  The global minimum residual ‖𝐄(Γ∗)‖ is determined by 
the at-rest object geometry and the target shape (𝐄(𝑡0) = 𝐕𝑏(𝑡0) − �̄�𝑏 in 
(A.16)) as well as by the gripper configuration (through the definition 
of the model (A.2)–(A.3)). Global minimum ‖𝐄(Γ∗)‖ will be lower in 
those systems that present favourable gripper configurations and larger 
in those in which the gripper configuration is inconvenient (see [29] 
for a method on favourable gripper positioning for deformable object 
manipulation).

Appendix B. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.robot.2025.105134.

Data availability

No data was used for the research described in the article.
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